姓名:葛永斌
职称:教授
导师类型:博导
E-mail:gyb@nxu.edu.cn
专业方向:计算数学
教育背景、社会兼职及获奖情况
2000年6月セブンラックカジノ ポーカー应用数学专业毕业,获得理学硕士学位;2003年12月上海理工大学工程热物理专业博士毕业,2004年3月获得工学博士学位。国家自然科学基金项目通讯评议人,2020年入选自治区青年拔尖人才工程。
研究领域
偏微分数值解法、计算流体力学、计算生物学、数学及工程软件开发
代表性研究成果
1. Zhenfu Tian*, Yongbin Ge. Afourth-ordercompactfinitedifferenceschemefor thesteadystreamfunction-vorticityformulation of the Navier-Stokes/Boussinesqequations.International Journal for Numerical Methods in Fluids, 2003,41:495-518
2. Z. F. Tian, Y. B. Ge. Afourth-ordercompact ADImethodfor solvingtwo-dimensionalunsteadyconvection-diffusion problems. Journal of Computational and Applied Mathematics, 2007,198: 268-286
3. Yongbin Ge. Multigridmethodandfourth-ordercompactdifferencediscretization schemewithunequalmeshsizesfor 3D Poisson equation. Journal of Computational Physics, 2010,229:6381-6391
4. Yuezhen Ma, Yongbin Ge*, Ahigh-orderfinitedifferencemethodwith Richardson extrapolation for 3Dconvection diffusion equation. Applied Mathematics and Computation, 2010,215:3408- 3417
5. Yongbin Ge*, Funjun Cao. Multigridmethodbasedon thetransformation-free HOCschemeon nonuniformgridsfor 2Dconvection diffusion problems. Journal of Computational Physics, 2011, 230:4051-4070
6. Yongbin Ge*, Fujun Cao, Jun Zhang. Atransformation-free HOCschemeandmultigridmethodfor solvingthe 3D Poisson equation on nonuniformgrids. Journal of Computational Physics, 2013,234:199-216
7. Yongbin Ge, Zhenfu Tian*, Jun Zhang. Anexponentialhigh-ordercompact ADImethodfor 3Dunsteadyconvection-diffusion problems. Numerical MethodsforPartial Differential Equations, 2013,29:186-205
8. Bin Lan, Yongbin Ge*, Yan Wang, Yong Zhan. Highordercompactdifferenceschemeandmultigridmethodfor 2Dellipticproblemswithvariablecoefficientsandinterior/boundarylayerson nonuniformgrids. Journalof Applied Mathematicsand Physics, 2015,3:509-523
9. Sheng Qin*, Ge Yongbin. Anumericalendeavorwithnonlinear Kawaradaequations. Dynamic Systemsand Applications, 2016,25: 543-556
10. Funjun Cao, Yongbin Ge*, Hai-Wei Sun. Partial semi-coarsening multigrid method based on the HOC scheme on nonuniform grids for the convection-diffusion problems. International Journal of Computer Mathematics, 2017, 94(12): 2356-2372
11. Funjun Cao, Dongfang Yuan, Yongbin Ge. The adaptive mesh method based on HOC difference scheme for convection diffusion equations with boundary layers. Computational and Applied Mathematics, 2018, 37(2): 1581-1600
12. Yongbin Ge, Fei Zhao, Jianying Wei*. A high order compact ADI method for solving 3D unsteady convection diffusion problems. Applied and Computational Mathematics, 2018, 7(1): 1-10
13. Yongbin Ge*, Zhiquan Cai, Qin Sheng. A compact adaptive approach for degenerate singular reaction-diffusion equations. Numerical Methods for Partial Differential Equations, 2018, 34(4): 1166-1187
14. Yan Wang, Yongbin Ge*. High-order compact difference scheme and multigrid method for solving the 2D elliptic problems. Mathematical Problems in Engineering,2018,Volume 2018, Article ID 7831731,11 pages, https://doi.org/10.1155/2018/7831731
15. Jianhua Chen, Yongbin Ge*. High order locally one-dimensional methods for solving two -dimensional parabolic equations. Advances in Difference Equations, 2018:361,https: //doi.org/10.1186/ s13662-018-1825-2
16. Xiaojia Yang, Yongbin Ge*, Lin Zhang. A class of high-order compact differenceschemes for solving the Burgers’ equations. Applied Mathematics and Computation, 2019, 358: 394-417
17. Tingfu Ma, Yongbin Ge*. Ahigher-order blended compact difference (BCD) method for solving the general 2D linear second-order partial differential equation. Advances in Difference Equations, 2019: 98, https://doi.org/10.1186/s13662-019-2034-3
18. Tingfu Ma, Yongbin Ge*. A blended compact difference (BCD) method for solving 3D convection-diffusion problems with variable coefficients. International Journal of Computational Methods, 2019,16: 1950022 (34 pages) DOI:10.1142/S0219876219500221
19. F. Tian, Y. B. Ge, Z. F. Tian*. Exponential high-order compact finite difference method for convection-dominated diffusion problems on nonuniform grids. Numerical Heat Transfer, Part B: Fundamentals, 2019, 75(3): 145-177
20. Xiaogang Li, Guodong Li*, Yongbin Ge. Improvement of third-order finite difference WENO scheme at critical points. International Journal of Computational Fluid Dynamics,2020, 34(1): 1-13
21. Xiaoliang Zhu, Yongbin Ge*.Adaptive ADInumericalanalysis of 2Dquenching-typereactiondiffusion equation with convection Term. Mathematical Problems in Engineering, 2020, Volume 2020, Article ID 8161804,19 pages,
22. Yunzhi Jiang, Yongbin Ge*. An explicit fourth-order compact difference scheme for solving the 2D wave equation. Advances in Difference Equations, 2020: 415, https://doi.org/ 10.1186/s13662-020 -02870-z
23. Tingfu Ma, Yongbin Ge*. High-order blended compact difference schemes for the 3D elliptic partial differential equation with mixed derivatives and variable coefficients. Advances in Difference Equations, 2020: 525, 02949-7
24. Xiaoliang Zhu, Yongbin Ge*. Adaptive high-order finite difference analysis of 2D quenching -type convection-reaction-diffusion equation. Advances in Mathematical Physics, Volume 2020, Article ID 3650703, 19 pages, https://doi.org/10.1155/2020/3650703
25. Tingfu Ma, Yongbin Ge*. High-order compact difference method for two-dimensional elliptic and parabolic equations with mixed derivatives. Tbilisi Mathematical Journal, 2020,13(4): 141-167
26. Miaomiao Yang, Wentao Ma, Yongbin Ge*. Ameshless collocation method with barycentric Lagrange interpolation for solving the Helmholtz equation. Computer Modeling in Engineering & Sciences, 2021,126(1): 25-54
27. Xiaogang Li, Guodong Li*, Yongbin Ge. A new fifth-order finite difference WENO scheme for dam-break simulations. Advances in Applied Mathematics and Mechanics, 2021, 13(1): 58-82
28. Xiaojia Yang, Yongbin Ge*, Bin Lan. A class of implicit high order compact difference method for solving the 2D and 3D Burgers equations. Mathematics and Computers in Simulation, 2021, 185: 510-534
29. Bo Hou, Yongbin Ge*. High-order compact LOD methods for solving high dimensional convection equations. Computational and Applied Mathematics, 2021 (Accepted)